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Abstract

This paper investigates the behavior of electromagnetic waves in the curved
spacetime of a Schwarzschild black hole. We develop a covariant formulation of
Maxwell’s equations in curved spacetime and derive the wave equation for electro-
magnetic perturbations in the Schwarzschild geometry. By solving these equations,
we analyze the unique propagation characteristics of electromagnetic radiation near
a black hole, with particular emphasis on the formation of photon rings and the
gravitational redshift effect. Our analytical approach builds upon the framework
established by DeWitt and Brehme DeWitt and Brehme (1960), extending it to
the specific case of the Schwarzschild metric. We derive expressions for the elec-
tromagnetic field components and analyze their behavior near the photon sphere
at r = 3M , where photons can orbit the black hole in unstable circular orbits
Johannsen (2013). To complement our analytical results, we implement numeri-
cal simulations to visualize photon trajectories and the formation of photon rings.
These simulations demonstrate how electromagnetic waves propagate in the vicin-
ity of a black hole and illustrate the optical appearance of photon rings as would
be observed by a distant observer. Our results have implications for understanding
the electromagnetic signatures of black holes and provide insights relevant to recent
achievements in black hole imaging, such as those by the Event Horizon Telescope.

1 Introduction

The study of electromagnetic wave propagation in curved spacetime offers profound in-
sights into fundamental physics and carries significant astrophysical implications. Since
Einstein’s formulation of general relativity, the interplay between electromagnetic fields
and gravity has been a subject of intense theoretical and observational investigation De-
Witt and Brehme (1960); Johannsen (2013). This relationship is particularly intriguing
in the vicinity of black holes, where the extreme curvature of spacetime dramatically
affects the behavior of electromagnetic radiation.

The mathematical foundation for understanding electromagnetic phenomena in curved
spacetime was established nearly a century ago when Einstein extended Maxwell’s equa-
tions to curved geometry Hon and Goldstein (2006). However, obtaining analytical and
numerical solutions to these equations in strongly curved regions remains challenging.
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The complexity arises not only from the mathematical structure of the equations but also
from the physical interpretation of the electromagnetic fields, which becomes observer-
dependent in curved spacetime Hwang and Noh (2023).

In the context of a Schwarzschild black hole—a non-rotating, spherically symmetric
solution to Einstein’s field equations—the metric is given by:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) (1)

where M is the mass of the black hole (with G = c = 1). This metric provides
a suitable environment for investigating electromagnetic wave behavior near a compact
object while maintaining analytical tractability.

One of the most striking phenomena in black hole physics is the existence of the photon
sphere at r = 3M , where photons can orbit the black hole in unstable circular trajec-
tories Johannsen (2013). These circular photon orbits give rise to photon rings—bright,
narrow rings that surround the black hole’s shadow when viewed by a distant observer.
The recent groundbreaking image of the supermassive black hole M87* by the Event
Horizon Telescope collaboration has provided observational evidence for these theoretical
predictions Akiyama et al. (2019).

Maxwell’s equations in curved spacetime can be written in a covariant form as:

∇µF
µν = 4πjν (2)

∇[σFµν] = 0 (3)

where Fµν is the electromagnetic field tensor, jν is the four-current, and ∇µ represents
the covariant derivative compatible with the metric ?. The second equation is equivalent
to Fµν = ∇µAν −∇νAµ, where Aµ is the four-potential.

When decomposed into the electric and magnetic fields measured by an observer with
four-velocity uµ, we have:

Eα = Fαβu
β (4)

Bα =
1

2
ϵαβγδu

βF γδ (5)

where ϵαβγδ is the completely antisymmetric Levi-Civita tensor Rhine (2023).
In this paper, we focus on deriving and solving the wave equation for electromagnetic

perturbations in the Schwarzschild geometry. Our aim is to analyze the propagation
characteristics of electromagnetic waves near the black hole, with particular emphasis on
the formation of photon rings. The wave equation in curved spacetime takes the form:

∇µ∇µAν −R µ
ν Aµ = 4πjν (6)

where R µ
ν is the Ricci tensor.

The interaction between electromagnetic waves and curved spacetime leads to several
remarkable effects. Gravitational redshift affects the frequency of light as observed at
different radial distances from the black hole:
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νobserved
νemitted

=

√√√√1− 2M
r1

1− 2M
r2

(7)

where r1 is the radius of emission and r2 is the radius of observation Rhine (2023).
Additionally, gravitational lensing causes light rays to follow curved paths determined by
the geodesic equation:

d2xµ

dλ2
+ Γµ

νρ

dxν

dλ

dxρ

dλ
= 0 (8)

where λ is an affine parameter and Γµ
νρ are the Christoffel symbols Mehdizadeh and

Jalili (2016).
Understanding these phenomena requires both analytical and numerical approaches.

In this work, we will first derive solutions to Maxwell’s equations in the Schwarzschild
background, focusing particularly on the behavior of electromagnetic waves near the pho-
ton sphere. We will then implement numerical simulations using ray tracing techniques
to visualize the propagation of light rays and the formation of photon rings.

This investigation has significant implications for interpreting observations of black
holes and their electromagnetic environments. As astronomical instruments continue to
improve, particularly with the next generation of the Event Horizon Telescope and future
space-based gravitational wave observatories, theoretical models of electromagnetic wave
behavior in curved spacetime will be essential for extracting physical information from
observational data.

The remainder of this paper is structured as follows: Section 2 presents the theoretical
framework for electromagnetic fields in curved spacetime. Section 3 derives analytical
solutions for electromagnetic waves in the Schwarzschild geometry. Section 4 describes our
numerical methods for simulating electromagnetic wave propagation and photon rings.
Section 5 presents the results of our simulations and compares them with analytical
predictions. Section 6 discusses the physical implications of our findings, and Section 7
summarizes our conclusions and outlines directions for future research.

2 Theoretical Framework

2.1 Maxwell’s Equations in Flat Spacetime

The foundation of electromagnetic theory in flat spacetime is Maxwell’s equations, which
in SI units are written as:

∇ · E =
ρ

ε0
(9)

∇ ·B = 0 (10)

∇× E = −∂B
∂t

(11)

∇×B = µ0J+ µ0ε0
∂E

∂t
(12)

where E is the electric field, B is the magnetic field, ρ is the charge density, J is
the current density, and ε0 and µ0 are the permittivity and permeability of free space,
respectively.
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In the relativistic formulation, these equations can be elegantly expressed using the
four-potential Aµ = (ϕ,A), where ϕ is the scalar potential and A is the vector potential.
The electric and magnetic fields can be derived from these potentials:

E = −∇ϕ− ∂A

∂t
(13)

B = ∇×A (14)

When working with natural units (c = 1) and using the metric convention ηµν =
diag(−1, 1, 1, 1), we can reformulate Maxwell’s equations in terms of the Faraday tensor
F µν , defined as:

F µν = ∂µAν − ∂νAµ (15)

This tensor contains both the electric and magnetic fields:

F µν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 (16)

With this formulation, Maxwell’s equations in flat spacetime reduce to:

∂µF
µν = 4πjν (17)

∂[σFµν] = 0 (18)

where jν = (ρ,J) is the four-current and the second equation represents the Bianchi
identity. Using the four-potential, the first equation becomes:

∂µ∂
µAν − ∂ν(∂µA

µ) = 4πjν (19)

Imposing the Lorenz gauge condition, ∂µA
µ = 0, simplifies this to:

□Aν = 4πjν (20)

where □ = ∂µ∂
µ is the d’Alembertian operator.

2.2 Covariant Formulation and Transition to Curved Spacetime

To extend Maxwell’s equations to curved spacetime, we must carefully reformulate them
in a covariant manner.

In flat spacetime, spacetime derivatives commute, allowing us to write Maxwell’s
equations using ordinary partial derivatives. In curved spacetime, however, this com-
mutativity breaks down due to the curvature of the manifold itself. The key insight is
to replace partial derivatives ∂µ with covariant derivatives ∇µ, which account for how
vector and tensor components change as we move from one point to another in curved
spacetime.

The covariant derivative of a vector field Aν is defined as:

∇µA
ν = ∂µA

ν + Γν
µρA

ρ (21)
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where Γν
µρ are the Christoffel symbols, which encode the curvature of spacetime. These

symbols are defined in terms of the metric tensor gµν as:

Γν
µρ =

1

2
gνα(∂µgρα + ∂ρgµα − ∂αgµρ) (22)

For a covector (one-form) Aν , the covariant derivative takes a slightly different form:

∇µAν = ∂µAν − Γρ
µνAρ (23)

Note the crucial sign difference compared to the vector case. This ensures that the
covariant derivative of the metric tensor vanishes (∇λgµν = 0), a property known as
metric compatibility.

Now, let’s examine how the Faraday tensor transforms in this new context. In flat
spacetime, we defined:

Fµν = ∂µAν − ∂νAµ (24)

In curved spacetime, the natural generalization would be:

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ − Γρ
µνAρ + Γρ

νµAρ (25)

However, we can simplify this expression due to an important symmetry property of
the Christoffel symbols in a torsion-free connection (which we assume in general relativ-
ity):

Γρ
µν = Γρ

νµ (26)

Therefore, the Christoffel symbol terms cancel, and we find the remarkable result:

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ (27)

This is a striking simplification—the Faraday tensor maintains the same form in terms
of partial derivatives even in curved spacetime! This is not generally true for other
tensors and represents a special property of antisymmetric tensors formed from gradients.
However, as we’ll see, this simplification is deceptive, as the curvature effects emerge when
we consider the dynamics of the electromagnetic field.

With the Faraday tensor properly defined, let’s rewrite Maxwell’s equations in fully
covariant form:

∇µF
µν = 4πjν (28)

∇[σFµν] = 0 (29)

The second equation (the Bianchi identity) is automatically satisfied by our definition
of Fµν in terms of the four-potential. To see this explicitly:

∇[σFµν] = ∇[σ(∇µAν −∇νAµ) = ∇[σ∇µAν ]−∇[σ∇νAµ] (30)

In flat spacetime, covariant derivatives commute, and this expression would vanish
identically. In curved spacetime, however, covariant derivatives don’t generally com-
mute—their commutator is proportional to the Riemann curvature tensor:
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[∇α,∇β]Vγ = RγδαβV
δ (31)

Nevertheless, the completely antisymmetrized expression ∇[σ∇µAν ] vanishes due to
the symmetry properties of the Riemann tensor (specifically, the first Bianchi identity).
Thus, the homogeneous Maxwell equations retain their form.

The first Maxwell equation, however, becomes significantly more complex in curved
spacetime. Let’s expand it explicitly:

∇µF
µν =

1√
−g

∂µ(
√
−gF µν) = 4πjν (32)

where g = det(gµν) is the determinant of the metric tensor. This formula incorporates
the fact that ∇µV

µ = 1√
−g
∂µ(

√
−gV µ) for any vector field V µ.

To derive the wave equation for the electromagnetic four-potential in curved space-
time, we substitute F µν = gµαgνβ(∇αAβ−∇βAα) into the inhomogeneous Maxwell equa-
tion:

∇µ[∇µAν −∇νAµ] = 4πjν (33)

Expanding the left-hand side:

∇µ∇µAν −∇µ∇νAµ = 4πjν (34)

Unlike in flat spacetime, we cannot freely interchange the order of covariant deriva-
tives. Using the commutation relation for covariant derivatives:

∇µ∇νAµ = ∇ν∇µA
µ +Rν

ρµσg
µσAρ = ∇ν∇µA

µ +Rν
ρA

ρ (35)

where Rν
ρ = gµσRν

ρµσ is the Ricci tensor. Substituting this into our wave equation:

∇µ∇µAν −∇ν∇µA
µ −Rν

ρA
ρ = 4πjν (36)

Imposing the Lorenz gauge condition in curved spacetime, ∇µA
µ = 0, we arrive at:

∇µ∇µAν −Rν
ρA

ρ = 4πjν (37)

This is the curved spacetime generalization of the wave equation for the electromag-
netic potential. The term involving the Ricci tensor Rν

ρ represents a direct coupling
between the electromagnetic field and spacetime curvature—a profound demonstration
of how gravity influences electromagnetism.

For a vacuum solution to Einstein’s field equations, such as the Schwarzschild metric,
the Ricci tensor vanishes (Rµν = 0), simplifying our equation to:

∇µ∇µAν = 4πjν (38)

However, this simplification can be misleading. Even though the Ricci tensor vanishes,
the wave equation still differs fundamentally from its flat-space counterpart because the
covariant d’Alembertian operator ∇µ∇µ contains the full geometry of spacetime through
the Christoffel symbols.

To see this explicitly, let’s expand the d’Alembertian in terms of partial derivatives
and Christoffel symbols:
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∇µ∇µAν = ∇µ(g
µα∇αA

ν) (39)

= gµα∇µ∇αA
ν + (∇µg

µα)∇αA
ν (40)

Using the metric compatibility condition ∇µg
αβ = 0, this simplifies to:

∇µ∇µAν = gµα∇µ∇αA
ν (41)

= gµα(∂µ∇αA
ν + Γν

µβ∇αA
β − Γβ

µα∇βA
ν) (42)

= gµα[∂µ(∂αA
ν + Γν

αβA
β) + Γν

µβ(∂αA
β + Γβ

αγA
γ)− Γβ

µα(∂βA
ν + Γν

βγA
γ)] (43)

After expanding and collecting terms, we obtain:

∇µ∇µAν =
1√
−g

∂µ(
√
−ggµα∂αAν) + gµα[∂µΓ

ν
αβA

β + Γν
αβ∂µA

β (44)

+ Γν
µβ∂αA

β + Γν
µβΓ

β
αγA

γ − Γβ
µα∂βA

ν − Γβ
µαΓ

ν
βγA

γ] (45)

This expression, while complex, reveals how profoundly the curved geometry affects
the propagation of electromagnetic waves. Even in regions where the Ricci tensor van-
ishes, the wave equation includes numerous terms involving Christoffel symbols and their
derivatives—each representing a distinct aspect of how spacetime curvature affects the
electromagnetic field.

In curved spacetime, we continue to decompose the Faraday tensor into electric and
magnetic fields, but this decomposition becomes observer-dependent in a more profound
way than in special relativity. Given an observer with four-velocity uµ (where uµuµ = −1),
we define:

Eα = Fαβu
β (46)

Bα =
1

2
ϵαβγδu

βF γδ (47)

where ϵαβγδ is the Levi-Civita tensor density, defined as:

ϵαβγδ =
√
−g Eαβγδ (48)

with Eαβγδ being the completely antisymmetric Levi-Civita symbol with E0123 = 1.
This observer-dependent decomposition highlights a profound insight: in curved space-

time, what one observer perceives as an electric field, another may perceive as a mixture of
electric and magnetic fields. The absolute distinction between electric and magnetic fields
that exists in classical electromagnetism dissolves completely in the curved spacetime of
general relativity, revealing the deep unity of these apparently distinct phenomena.

2.3 The Schwarzschild Metric

The Schwarzschild metric describes the spacetime around a non-rotating, spherically
symmetric mass. In natural units (G = c = 1), it is given by:
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Figure 1: Embedding diagram of Schwarzschild spacetime, illustrating the curvature
of space around a non-rotating black hole. The plot represents a 2D slice of the
Schwarzschild metric embedded in a higher-dimensional Euclidean space, showing how
the gravitational well deepens near the event horizon.

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2) (49)

where M is the mass of the central object. The metric components are:

gtt = −
(
1− 2M

r

)
≡ −f(r) (50)

grr =
1

f(r)
(51)

gθθ = r2 (52)

gϕϕ = r2 sin2 θ (53)

The Schwarzschild metric has several notable features:

• At r = 2M , we encounter the event horizon where f(r) = 0

• At r = 3M , there exists a photon sphere where photons can orbit in unstable
circular paths
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• As r → ∞, the metric approaches the flat Minkowski metric

The non-zero Christoffel symbols for the Schwarzschild metric are:

Γt
tr = Γt

rt =
M

r2f(r)
(54)

Γr
tt =

Mf(r)

r2
(55)

Γr
rr = − M

r2f(r)
(56)

Γr
θθ = −rf(r) (57)

Γr
ϕϕ = −rf(r) sin2 θ (58)

Γθ
rθ = Γθ

θr =
1

r
(59)

Γθ
ϕϕ = − sin θ cos θ (60)

Γϕ
rϕ = Γϕ

ϕr =
1

r
(61)

Γϕ
θϕ = Γϕ

ϕθ = cot θ (62)

The Ricci tensor Rµν vanishes for the Schwarzschild metric since it is a vacuum so-
lution to Einstein’s field equations. However, the Riemann curvature tensor Rµνρσ does
not vanish, reflecting the curvature of spacetime around the mass.

2.4 Electromagnetic Wave Equation in Schwarzschild Space-
time

In the Schwarzschild spacetime, Maxwell’s equations can be written in terms of the elec-
tromagnetic four-potential as:

∇µ∇µAν −∇ν∇µA
µ = 0 (63)

where we’ve set jν = 0 for the vacuum case and used the fact that the Ricci tensor
vanishes. Applying the Lorenz gauge condition in curved spacetime, ∇µA

µ = 0, we
obtain:

∇µ∇µAν = 0 (64)

This is the curved spacetime analog of the wave equation DeWitt and Brehme (1960).
To solve this equation explicitly in Schwarzschild geometry, we must expand the covariant
d’Alembertian operator in these coordinates.

2.4.1 Expansion of the Covariant d’Alembertian

For a four-vector field Aν in Schwarzschild spacetime, the covariant d’Alembertian ex-
pands as:

∇µ∇µAν =
1√
−g

∂µ(
√
−ggµα∂αAν)− Γα

νβ∇µ∇µAα + Γα
µν∇µAα (65)

9



Using the Schwarzschild metric components and noting that
√
−g = r2 sin θ, we can

expand this expression for each component of Aν . For example, for the time component
A0, this becomes:

∇µ∇µA0 = − 1

f(r)

∂2A0

∂t2
+

1

r2
∂

∂r

(
r2f(r)

∂A0

∂r

)
(66)

+
1

r2 sin θ

∂

∂θ

(
sin θ

∂A0

∂θ

)
+

1

r2 sin2 θ

∂2A0

∂ϕ2
− 2M

r2f(r)

∂Ar

∂t
(67)

Similar expressions can be derived for the spatial components Ar, Aθ, and Aϕ, each
involving coupling between the different components.

2.4.2 Separation of Variables

Due to the spherical symmetry of the Schwarzschild spacetime, we can employ separation
of variables. However, the vector nature of the potential requires careful treatment. The
appropriate approach is to decompose the potential in terms of vector spherical harmonics
DeWitt and Brehme (1960). These harmonics come in three types, and the components
of the electromagnetic four-potential can be written as:

At(t, r, θ, ϕ) =
∑
l,m

e−iωtalm(r)Ylm(θ, ϕ) (68)

Ar(t, r, θ, ϕ) =
∑
l,m

e−iωtblm(r)Ylm(θ, ϕ) (69)

Aθ(t, r, θ, ϕ) =
∑
l,m

e−iωt

[
clm(r)

∂Ylm
∂θ

+ dlm(r)
1

sin θ

∂Ylm
∂ϕ

]
(70)

Aϕ(t, r, θ, ϕ) =
∑
l,m

e−iωt

[
clm(r)

∂Ylm
∂ϕ

+ dlm(r) sin θ
∂Ylm
∂θ

]
(71)

where Ylm(θ, ϕ) are the scalar spherical harmonics, and alm(r), blm(r), clm(r), and
dlm(r) are radial functions to be determined.

2.4.3 Application of the Lorenz Gauge

The Lorenz gauge condition, ∇µA
µ = 0, introduces a constraint on these radial functions:

− 1

f(r)
∂tA

t +
1

r2
∂r(r

2Ar) +
1

r2 sin θ
∂θ(sin θA

θ) +
1

r2 sin θ
∂ϕA

ϕ = 0 (72)

Substituting our decomposition and performing the angular derivatives, we obtain a
relation between alm(r), blm(r), and clm(r):

iωalm(r)

f(r)
+

1

r2
d

dr
(r2blm(r)) +

l(l + 1)

r2
clm(r) = 0 (73)
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2.4.4 Decoupling into Parity Modes

A key simplification arises by recognizing that Maxwell’s equations in Schwarzschild
spacetime naturally separate into two distinct sets of equations corresponding to even-
parity (polar) and odd-parity (axial) perturbations:

• Even-parity (polar) modes: These involve the functions alm(r), blm(r), and
clm(r)

• Odd-parity (axial) modes: These involve only the function dlm(r)

For the odd-parity modes, which correspond to magnetic-type perturbations, after
substituting into the wave equation and simplifying, we obtain:

d2

dr2∗
(rdlm) +

[
ω2 − f(r)

l(l + 1)

r2

]
(rdlm) = 0 (74)

where r∗ is the tortoise coordinate defined by:

r∗ = r + 2M ln
( r

2M
− 1
)

(75)

With the substitution ψodd
lm = rdlm, this equation takes the Schrödinger-like form:

d2ψodd
lm

dr2∗
+ [ω2 − V odd

l (r)]ψodd
lm = 0 (76)

where V odd
l (r) is the effective potential:

V odd
l (r) = f(r)

l(l + 1)

r2
(77)

For the even-parity modes, the derivation is more involved but leads to a similar equa-
tion. After applying the Lorenz gauge condition to eliminate one of the three functions
and performing a series of transformations, the even-parity modes are described by:

d2ψeven
lm

dr2∗
+ [ω2 − V even

l (r)]ψeven
lm = 0 (78)

where the effective potential is:

V even
l (r) = f(r)

l(l + 1)

r2
(79)

Remarkably, for electromagnetic perturbations (unlike gravitational ones), the effec-
tive potentials for odd and even parity modes are identical. This reflects a key property of
electromagnetic fields in Schwarzschild spacetime: despite the vector nature of the field,
the two polarization modes propagate identically.

2.4.5 Boundary Conditions

To fully specify the solution, we need appropriate boundary conditions:

• At the event horizon (r∗ → −∞), we require purely ingoing waves:

ψlm ∼ e−iωr∗ (80)
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Figure 2: Light cone structure near a Schwarzschild black hole, showing the gravitational
time dilation effect. The plot illustrates how the shape of light cones changes with
increasing radial coordinate r, indicating the warping of spacetime. The event horizon
(solid black line) and photon sphere (dashed red line) are marked for reference.

• At spatial infinity (r∗ → +∞), we require purely outgoing waves:

ψlm ∼ eiωr∗ (81)

These boundary conditions correspond physically to the fact that classical waves can-
not escape from inside the event horizon, and for scattering problems, we typically con-
sider waves that radiate energy outward at infinity.

2.4.6 Interpretation of the Regge-Wheeler Equation

The Regge-Wheeler equation that we’ve derived:

d2ψ

dr2∗
+ [ω2 − Vl(r)]ψ = 0 (82)

has the form of a one-dimensional Schrödinger equation with an effective potential
Vl(r). This potential has a maximum at approximately r = 3M for large l, which coincides
with the photon sphere Johannsen (2013).

The behavior of electromagnetic waves is dictated by the shape of this effective po-
tential:

Vl(r) = f(r)
l(l + 1)

r2
=

(
1− 2M

r

)
l(l + 1)

r2
(83)
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For l ≥ 1 (which is required for electromagnetic waves), this potential forms a barrier
with a peak near the photon sphere. Waves with frequency ω may be:

• Reflected, if ω2 < Vmax

• Transmitted, if ω2 > Vmax

• Trapped in a quasi-bound state, if ω2 ≈ Vmax

These quasi-bound states correspond to the quasi-normal modes of black holes—characteristic
oscillations that decay exponentially with time due to energy loss through both the event
horizon and radiation to infinity.

The solution to the Regge-Wheeler equation can be expressed in terms of confluent
Heun functions, but for most practical applications, numerical methods or asymptotic ap-
proximations are employed. For frequencies much higher than the height of the potential
barrier (ω2 ≫ Vmax), a WKB approximation yields:

ψ ≈ 1√
2ω

(
Aeiωr∗ +Be−iωr∗

)
(84)

where the coefficients A and B can be determined from the boundary conditions.
This wave equation and its solutions form the foundation for understanding how

electromagnetic waves propagate in Schwarzschild spacetime, particularly the formation
of photon rings around black holes that we discuss in subsequent sections.

2.5 Electromagnetic Fields in Schwarzschild Spacetime

To understand how electromagnetic waves behave in Schwarzschild spacetime, we need
to relate the four-potential to the observable electric and magnetic fields. For this, we
use a locally orthonormal tetrad frame carried by an observer with four-velocity uµ.

For a static observer at fixed (r, θ, ϕ) coordinates in Schwarzschild spacetime, the
four-velocity is:

uµ =

(
1√
f(r)

, 0, 0, 0

)
(85)

The corresponding orthonormal tetrad basis vectors are:

eµ(t) = uµ =

(
1√
f(r)

, 0, 0, 0

)
(86)

eµ(r) =
(
0,
√
f(r), 0, 0

)
(87)

eµ(θ) =

(
0, 0,

1

r
, 0

)
(88)

eµ(ϕ) =

(
0, 0, 0,

1

r sin θ

)
(89)

In this tetrad frame, the components of the electric and magnetic fields are:
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E(i) = Fµνe
µ
(t)e

ν
(i) (90)

B(i) =
1

2
ϵ(i)(j)(k)Fµνe

µ
(j)e

ν
(k) (91)

where ϵ(i)(j)(k) is the Levi-Civita symbol in the local Minkowski space.
The propagation of electromagnetic waves in Schwarzschild spacetime exhibits several

distinctive features ?:

1. Gravitational redshift: Light emitted near the black hole experiences a frequency
shift when observed at a different radial distance:

νobserved
νemitted

=

√
f(r1)

f(r2)
(92)

where r1 is the emission radius and r2 is the observation radius.

2. Light bending: Electromagnetic waves follow null geodesics that are curved by the
spacetime geometry. The equation for a light ray in the equatorial plane (θ = π/2)
can be derived from the geodesic equation and takes the form:(

dr

dϕ

)2

=
r4

b2

(
1− 2M

r

)
− r2

(
1− 2M

r

)
(93)

where b is the impact parameter.

3. Photon rings: At r = 3M , there exists an unstable circular orbit for photons.
The impact parameter for this critical orbit is bc = 3

√
3M . Light rays with impact

parameters close to bc can orbit the black hole multiple times before escaping,
creating a series of photon rings when observed Johannsen (2013).

2.6 Circular Photon Orbits and Photon Rings

A particularly important feature of electromagnetic wave propagation in Schwarzschild
spacetime is the existence of circular photon orbits at r = 3M . These orbits are unstable,
meaning that small perturbations will cause photons to either fall into the black hole or
escape to infinity Johannsen (2013).

The effective potential for null geodesics in Schwarzschild spacetime has a maximum
at r = 3M , corresponding to the photon sphere. At this radius, photons can orbit the
black hole in circular trajectories. The angular velocity of these photons is:

Ω =
dϕ

dt
=

√
f(r)

r
=

1

3
√
3M

(94)

When viewed by a distant observer, the critical impact parameter bc = 3
√
3M cor-

responds to the apparent radius of the photon ring. Photons with impact parameters
slightly larger than bc will orbit the black hole multiple times before escaping, producing
a series of nested rings in the image plane. The observed angular radius of the photon
ring is:
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αc =
bc
D

=
3
√
3M

D
(95)

where D is the distance to the black hole.
The formation of photon rings can be understood in terms of the transfer function

between the image plane and the source plane. As the impact parameter approaches bc,
the deflection angle of light rays increases dramatically, allowing photons to complete
multiple orbits around the black hole. This creates a logarithmic divergence in the map-
ping between the image and source planes, leading to an infinite series of increasingly
demagnified images Johannsen (2013).

The appearance of these photon rings is a distinctive feature of black hole imagery
and has been a key target for observations by instruments such as the Event Horizon
Telescope. The photon ring carries important information about the spacetime geometry
and can potentially be used to test general relativity in the strong field regime.

3 Analytical Solutions

Building on the theoretical framework established in the previous section, we now derive
analytical solutions for electromagnetic wave propagation in Schwarzschild spacetime,
with particular emphasis on the behavior near the photon sphere and the formation of
photon rings.

3.1 Analysis of Circular Photon Orbits

The circular photon orbits play a crucial role in the formation of photon rings and the
overall wave propagation in Schwarzschild spacetime. These orbits occur at the critical
radius rc = 3M , where the effective potential for null geodesics reaches its maximum
Johannsen (2013).

To derive the conditions for circular photon orbits, we analyze the geodesic equation
for null rays. In the Schwarzschild metric, the geodesic equation can be derived from the
Lagrangian:

L =
1

2
gµν

dxµ

dλ

dxν

dλ
(96)

where λ is an affine parameter. For null geodesics, we have L = 0.
Due to the spherical symmetry of the Schwarzschild spacetime, we can without loss

of generality consider motion in the equatorial plane (θ = π/2). The Lagrangian then
becomes:

L =
1

2

[
−f(r)ṫ2 + ṙ2

f(r)
+ r2ϕ̇2

]
= 0 (97)

where dots denote derivatives with respect to λ.
The Schwarzschild metric admits two Killing vectors, ∂t and ∂ϕ, leading to two con-

served quantities:

E = f(r)ṫ (98)

L = r2ϕ̇ (99)

15



where E represents the energy per unit mass and L represents the angular momentum
per unit mass.

Using these constants of motion, the radial geodesic equation can be written as:

ṙ2 + Veff(r) = E2 (100)

where the effective potential is:

Veff(r) = f(r)
L2

r2
(101)

For circular orbits, we require ṙ = 0 and dVeff

dr
= 0. The second condition gives:

dVeff
dr

=
d

dr

[(
1− 2M

r

)
L2

r2

]
= 0 (102)

Evaluating this derivative, we obtain:

2M

r3
L2

r2
−
(
1− 2M

r

)
2L2

r3
= 0 (103)

Simplifying:

2M

r
−
(
1− 2M

r

)
· 2 = 0 (104)

This yields the condition:

3M = r (105)

Thus, the circular photon orbit occurs at precisely r = 3M , confirming the location
of the photon sphere Johannsen (2013).

At this radius, the impact parameter b = L
E
is:

bc =
L

E
=

rc√
f(rc)

=
3M√
1− 2M

3M

= 3
√
3M (106)

This critical impact parameter corresponds to the apparent radius of the photon ring
as seen by a distant observer.

3.2 Effective Potentials and Wave Propagation

The effective potential in Equation 101 determines how electromagnetic waves propagate
in Schwarzschild spacetime. For odd parity electromagnetic modes, the effective potential
can be explicitly written as:

V odd
l (r) = f(r)

[
l(l + 1)

r2

]
(107)

While for even parity modes, it is:

V even
l (r) = f(r)

[
l(l + 1)

r2

]
(108)
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Figure 3: Effective potential for null geodesics in Schwarzschild spacetime for different
angular momentum values. The vertical red dashed line marks the photon sphere at
r = 3M , where all potential curves reach their maximum, corresponding to unstable
circular photon orbits. The black vertical line indicates the event horizon at r = 2M .

Notably, for electromagnetic waves (spin-1 fields), the potentials for odd and even
parity modes are identical. This contrasts with gravitational waves (spin-2 fields), where
the two potentials differ.

The behavior of electromagnetic waves is dictated by the shape of this effective po-
tential. For l ≥ 1, the potential has a maximum near r ≈ 3M , which coincides with the
photon sphere. The height of this potential barrier increases with l, approaching:

Vmax ≈
l2

27M2
for large l (109)

When electromagnetic waves with frequency ω encounter this potential barrier, several
phenomena occur:

1. Waves with ω2 < Vmax are partially reflected and partially transmitted. 2. Waves
with ω2 ≫ Vmax are largely transmitted. 3. Waves with ω2 ≈ Vmax can resonantly excite
the photon sphere, leading to long-lived quasi-normal modes.

The quasi-normal modes represent the characteristic oscillations of the black hole
in response to electromagnetic perturbations. These modes have complex frequencies
ω = ωR + iωI , where ωR represents the oscillation frequency and ωI (negative) represents
the damping rate.

For large l, the quasi-normal frequencies approach:

ω ≈ l

3
√
3M

− i
(n+ 1

2
)

3
√
3M

(110)

where n is the overtone number. These modes decay exponentially with time as eωI t,
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but the decay rate decreases with increasing l, leading to long-lived oscillations near the
photon sphere.

3.3 Formation of Photon Rings

One of the most profound consequences of electromagnetic propagation in Schwarzschild
spacetime is the formation of photon rings—luminous halos encircling a black hole’s
shadow. These rings emerge when spacetime curvature near the photon sphere (r = 3M)
allows light to orbit the black hole multiple times before escaping to a distant observer
or falling past the event horizon.

The mathematics behind this phenomenon follows directly from our analysis of elec-
tromagnetic wave propagation. The critical impact parameter bc = 3

√
3M derived in

Equation 106 represents a threshold where, theoretically, light would orbit indefinitely at
the photon sphere. For impact parameters slightly greater than bc, the deflection angle
Φ relates to the impact parameter as:

Φ(b) = 2

∫ ∞

r0

dr

r
√

r2

b2
f(r)− 1

(111)

where r0 is the radius of closest approach, determined by
r20
b2
f(r0) = 1.

As b approaches bc from above, this deflection angle logarithmically diverges:

Φ(b) ≈ −
√
3 ln

(
b

bc
− 1

)
+ constant +O

(
b

bc
− 1

)
(112)

This logarithmic divergence is the fundamental reason photon rings form—it allows
light rays to complete arbitrarily many orbits as they approach the critical impact pa-
rameter.

For a source at angular position β relative to the optical axis, the lens equation relates
source and image positions:

β = α− Φ(Dα)− 2πn

D
(113)

where α is the apparent angular position, D is the distance to the black hole, and
n = 0, 1, 2, ... counts the number of orbits. This equation yields an infinite sequence of
images:

αn ≈ αc + e
− 2πn+γ√

3 (114)

where αc = bc
D

is the apparent angular radius of the photon ring. Crucially, each
subsequent image becomes exponentially dimmer:

In ∝ e
− 2πn√

3 (115)

The Event Horizon Telescope’s 2019 image of M87* provided our first observational
confirmation of this phenomenon Akiyama et al. (2019). The observed ring’s 42-microarcsecond
diameter aligns with theoretical predictions for a black hole of mass 6.5 × 109M⊙, con-
firming both the event horizon’s existence and the extreme light-bending near the photon
sphere.

Recent analysis of EHT data suggests substructure within the observed emission that
may represent the theoretically predicted photon sub-rings ?. Future higher-resolution
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observations may resolve these sub-rings, potentially allowing us to ”count” photon or-
bits directly—a remarkable prospect for testing our electromagnetic theory in curved
spacetime.

These photon rings thus serve dual purposes: visually demonstrating how Maxwell’s
equations manifest in curved spacetime, and providing precision tools for testing general
relativity in the strong-field regime. Any deviation from the Schwarzschild geometry
would create distinctive signatures in the rings’ size, shape, and structure, offering a
powerful probe of the fundamental nature of gravity and spacetime.

3.4 Gravitational Redshift Effects

Electromagnetic waves propagating in Schwarzschild spacetime experience frequency shifts
due to gravitational redshift Rhine (2023). The gravitational redshift between an emitter
at radial coordinate r1 and an observer at r2 is given by:

ν2
ν1

=

√
gtt(r1)

gtt(r2)
=

√
f(r1)

f(r2)
=

√√√√1− 2M
r1

1− 2M
r2

(116)

For a distant observer (r2 → ∞), this simplifies to:

ν∞
ν1

=

√
1− 2M

r1
(117)

This formula has several important implications:
1. Light emitted from r1 = 2M (the event horizon) would be infinitely redshifted.

2. Light emitted from the photon sphere (r1 = 3M) would be redshifted by a factor
ν∞
ν1

=
√

1
3
≈ 0.577. 3. The redshift can be combined with the Doppler effect for moving

sources, yielding:

νobserved
νemitted

=

√
f(r1)

f(r2)

1∓ vr
1∓ v′r

(118)

where vr and v
′
r are the radial velocities of the emitter and observer, respectively.

When considering electromagnetic waves forming the photon rings, each successive
ring corresponds to light that has spent more time in the vicinity of the photon sphere.
This results in different amounts of gravitational redshift for each ring, creating a char-
acteristic spectral pattern that could potentially be observed with high-resolution spec-
troscopy.

Additionally, the frequency of electromagnetic quasi-normal modes observed at infin-
ity is redshifted compared to their intrinsic frequencies near the black hole. This effect
must be accounted for when interpreting observations of electromagnetic radiation from
the vicinity of black holes.

For an observer at a fixed radius in Schwarzschild spacetime, the electromagnetic
field components measured in their local orthonormal frame are related to the coordinate
components by:
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Er̂ =
√
f(r)Er (119)

Eθ̂ =
1

r
Eθ (120)

Eϕ̂ =
1

r sin θ
Eϕ (121)

and similarly for the magnetic field components. These local measurements are af-
fected by both the gravitational redshift and the mapping between coordinate and physi-
cal distances, providing a complete description of how electromagnetic waves are observed
in Schwarzschild spacetime.

4 Simulation Results

Using the numerical methods described in the previous section, we now present the results
of our simulations of electromagnetic wave propagation and photon rings in Schwarzschild
spacetime. These results provide visual confirmation of the analytical predictions and
offer insights into the optical appearance of black holes.

4.1 Geodesic Trajectories

Figure 4 shows the trajectories of light rays with various impact parameters around a
Schwarzschild black hole of mass M = 1. The observer is positioned at (x, y) = (30, 0),
corresponding to a radial coordinate of r = 30M . The black circle at the center represents
the event horizon at r = 2M , while the dashed red circle indicates the photon sphere at
r = 3M . The dotted orange circle shows the critical impact parameter bc = 3

√
3M ≈

5.2M .
Several important features are evident from these trajectories:

1. Light rays with impact parameters b < bc (e.g., b = 4.94M) are captured by the
black hole, ultimately crossing the event horizon.

2. Light rays with impact parameters approximately equal to the critical value (e.g.,
b = 5.20M) approach the photon sphere and undergo significant deflection. These
rays can orbit the black hole one or more times before escaping to infinity.

3. Light rays with impact parameters slightly above the critical value (e.g., b = 5.25M
and b = 5.46M) are strongly deflected but ultimately escape to infinity. The degree
of deflection decreases as the impact parameter increases.

These results confirm our analytical predictions from Section 3, particularly the re-
lationship between the impact parameter and the deflection angle. The critical impact
parameter bc = 5.2M precisely separates captured rays from escaping rays, leading to the
formation of the photon ring observed by a distant observer.
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Figure 4: Null geodesics in Schwarzschild spacetime with different impact parameters.
The black circle represents the event horizon at r = 2M , the dashed red circle represents
the photon sphere at r = 3M , and the dotted orange circle represents the critical impact
parameter bc = 3

√
3M . The observer is positioned at (x, y) = (30, 0).

4.2 Photon Ring Visualization

Figure 5 presents a simulated image of a Schwarzschild black hole as would be seen by
a distant observer. The central dark region represents the black hole shadow, which is
surrounded by a bright, narrow ring—the photon ring. The image clearly shows several
important features:

1. The shadow appears as a perfectly circular dark region with an apparent radius of
rshadow = 3

√
3M ≈ 5.2M , corresponding to the critical impact parameter.

2. The photon ring appears as a bright, narrow, and perfectly circular ring surrounding
the shadow. This ring is formed by light rays with impact parameters slightly larger
than the critical value, which execute nearly complete orbits around the black hole
before escaping to the observer.

3. The intensity of the photon ring is not uniform but varies with the number of orbits
completed by the contributing light rays. As analytically predicted in Section 3, the

intensity diminishes exponentially with the number of orbits, following In ∝ e
− 2πn√

3 .

The perfect circularity of the photon ring is a consequence of the spherical symmetry
of the Schwarzschild spacetime. This distinguishes the Schwarzschild black hole from
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Figure 5: Simulated image of a Schwarzschild black hole with M = 1. The black central
region corresponds to the black hole shadow. The bright red ring is the photon ring,
corresponding to light rays with impact parameters slightly greater than the critical
value. The white circle indicates the event horizon, the dashed red circle shows the
photon sphere, and there’s a reference to the critical impact parameter.

rotating (Kerr) black holes, which would exhibit asymmetric photon rings Johannsen
(2013).

4.3 Gravitational Redshift Effects

Figure 6 illustrates the gravitational redshift effects in Schwarzschild spacetime. The left
panel shows how the redshift factor νobserved/νemitted varies with radial distance, while the
right panel provides a spatial visualization of the redshift distribution.

Key observations from these results include:

1. The redshift factor approaches zero as r approaches the event horizon at r = 2M ,
indicating that light emitted near the horizon would be infinitely redshifted.

2. At the photon sphere (r = 3M), the redshift factor is approximately 0.58, which
matches our analytical prediction from Equation 116.
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Figure 6: Gravitational redshift in Schwarzschild spacetime. Left: Redshift factor as
a function of radius. Right: Spatial distribution of gravitational redshift, with colors
representing the redshift factor. The black central region is the black hole, surrounded
by the photon sphere (dashed red circle).

3. The redshift factor increases monotonically with radius, asymptotically approaching

1 as r → ∞, consistent with the analytic expression νobserved/νemitted =
√

1− 2M
r
.

4. The spatial distribution (right panel) shows how the redshift varies in the observer’s
image plane. The color gradient from blue to red represents increasing redshift
factors, demonstrating how electromagnetic radiation from different regions around
the black hole would be observed at different frequencies.

The simulation accurately captures the frequency shift of electromagnetic waves prop-
agating through the curved spacetime. This effect is crucial for interpreting spectroscopic
observations of radiation originating near black holes.

4.4 Validation Against Analytical Predictions

To validate our numerical results, we compare them with the analytical predictions de-
rived in Section 3:

1. Critical Impact Parameter: Our simulations yield a critical impact parameter
of bc = 5.2M , matching the analytical value of bc = 3

√
3M ≈ 5.196M .

2. Shadow Radius: The simulated black hole shadow has a radius of 5.2M , consistent
with the analytical prediction.
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3. Photon Ring Formation: The simulations confirm that light rays with impact
parameters slightly above bc form the photon ring, as predicted by the analytical
model.

4. Gravitational Redshift: The simulated redshift factors at various radii agree

with the analytical expression νobserved/νemitted =

√
1− 2M

r1

1− 2M
r2

.

The close agreement between our numerical results and analytical predictions validates
both our theoretical framework and numerical implementation.

5 Discussion and Conclusions: The Electromagnetic

Imprint of Curved Spacetime

Our investigation has revealed how the elegant form of Maxwell’s equations in curved
spacetime manifests in observable reality around black holes. The covariant framework
we developed doesn’t merely represent a mathematical exercise—it provides the theoret-
ical foundation for understanding some of the most stunning visual phenomena in our
universe: the formation of photon rings and the electromagnetic signatures of extreme
gravity.

5.1 Physical Manifestations of Maxwell’s Equations Near Black
Holes

The most striking conclusion from our analysis is how the deceptively simple transforma-
tion of Maxwell’s equations from flat to curved spacetime—a matter of replacing partial
derivatives with covariant ones—leads to dramatic physical consequences. The solutions
to these equations near a Schwarzschild black hole reveal that electromagnetic waves
no longer propagate along straight lines but instead follow the curved null geodesics of
spacetime.

The photon ring emerges from our analysis not as a physical structure in space but
as an optical illusion—a mirage created by the extreme warping of light paths near the
black hole. This ring represents a collection of photons that have orbited the black hole
one or more times before reaching the observer. The mathematical beauty of this phe-
nomenon lies in the logarithmic divergence of the deflection angle as the impact parameter
approaches its critical value bc = 3

√
3M . This property creates a theoretically infinite

sequence of nested images, each corresponding to light that has completed an additional
orbit.

What makes this even more remarkable is that the electromagnetic field equations
predict precise, quantifiable properties for these rings. The exponential demagnification

factor In ∝ e
− 2πn√

3 means that while an infinite series of rings is mathematically possible,
only the primary (n = 1) and perhaps secondary (n = 2) rings would ever be observable,
regardless of instrumental precision. This represents a fundamental limit imposed by the
physics, not merely by technological constraints.

The gravitational redshift effect reveals another profound consequence of electromag-
netism in curved spacetime. Our analysis shows that light emitted from the vicinity of
the photon sphere (r = 3M) reaches a distant observer with approximately 58% of its
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original frequency—a direct manifestation of how spacetime curvature affects the energy
of electromagnetic waves. This effect creates a distinctive spectral fingerprint, potentially
allowing us to determine the emission radius of observed radiation through spectroscopic
analysis.

5.2 Confronting Theory with Observation: The Event Horizon
Telescope

In April 2019, humanity captured its first direct image of a black hole’s shadow when the
Event Horizon Telescope (EHT) collaboration released its groundbreaking observation of
M87* Akiyama et al. (2019). This achievement represents the most rigorous test to date
of our theoretical understanding of electromagnetic wave propagation in strongly curved
spacetime.

The EHT image revealed a bright ring structure with a diameter of approximately
42 microarcseconds, corresponding to a physical scale of about 5.5 Schwarzschild radii.
This measurement is remarkably consistent with the predicted size of the photon ring
for a supermassive black hole of mass 6.5 × 109M⊙. The observed ring-like structure
provides compelling evidence for both the existence of an event horizon and the photon
sphere—direct confirmations of two key predictions of general relativity.

Figure 7: Three instantaneous snapshots from a GRMHD simulation (top) and their
corresponding visibility amplitudes (bottom). The snapshot images exhibit complex az-
imuthal and small-scale structures in the photon ring, leading to intricate interferometric
signatures at long baselines. This complexity poses challenges for sparse interferometers,
making short-duration observations less effective than longer integrations.

More recently, improved analysis techniques applied to the EHT data have begun
to reveal potential substructure within the observed emission Johannsen (2013). This
may correspond to the theoretically predicted photon sub-rings that we derived from
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Maxwell’s equations in Schwarzschild spacetime. If confirmed, such observations would
provide an even more stringent test of the electromagnetic theory in curved spacetime
presented in this paper.

The comparison between theory and observation is not without complications, how-
ever. The EHT observations differ from our idealized Schwarzschild scenario in several
important ways:

1. Astrophysical Environment: The observed emission originates primarily from
hot plasma in the accretion flow surrounding M87*, not from distant background
sources as in our simplified model. This introduces complex emission and absorption
processes that modify the observed intensity distribution.

2. Black Hole Rotation: M87* is likely a rotating (Kerr) black hole rather than
a static Schwarzschild black hole. This rotation introduces asymmetries in the
photon ring and shifts both the position and size of the shadow. The observed
slight asymmetry in brightness around the ring provides tentative evidence for this
rotation.

3. Instrumental Effects: The limited resolution and coverage of the EHT array
introduces blurring and artifacts in the reconstructed image, making it challenging
to distinguish fine features such as the separation between the photon ring and
emission from the accretion flow.

Despite these differences, the concordance between the observed ring size and our
theoretical predictions provides compelling validation of the framework we’ve developed.
The deviations from our idealized model offer opportunities for future refinements, poten-
tially allowing measurements of black hole spin and tests of the no-hair theorem through
precise characterization of the photon ring structure.

The next generation of radio telescope arrays, including future expansions of the
EHT and proposed space-based interferometers, will significantly improve our ability to
resolve photon ring substructure. These observations may eventually allow us to ”count”
the number of orbits photons have completed around a black hole before reaching our
detectors—a direct confirmation of the geometric optics picture derived from Maxwell’s
equations in curved spacetime.

In conclusion, our investigation of electromagnetic wave propagation in Schwarzschild
spacetime represents more than an academic exercise in solving differential equations.
It provides a crucial link between fundamental physics and cutting-edge astronomical
observations. As we stand at the threshold of a new era in black hole imaging, with
unprecedented resolution and sensitivity becoming available, the electromagnetic theory
of curved spacetime will continue to guide our understanding of these most extreme
objects in our universe—where Maxwell’s elegant equations reveal their most profound
implications.

Note

The code and data used for this project are available on GitHub at the following link:
GitHub Repository. This repository contains the Jupyter Notebook used for analysis
and visualization.
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