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Abstract

Astrophysical black holes arise from the remnants of massive stars, typically
those exceeding 20M⊙. When these stars exhaust their nuclear fuel, they explode
as supernovae. The core then collapses under gravitational forces. If the mass sur-
passes approximately 3M⊙, no force can stop the contraction, creating a singularity
encased by an event horizon. Given the conservation of angular momentum, these
black holes usually rotate, making the Kerr metric (Kerr, 1963), which describes
spacetime around rotating masses, more applicable than the Schwarzschild solution
for non-rotating black holes.

Recent advancements in radio instrumentation have allowed us to directly image
the shadow of distant supermassive black holes. Very Long Baseline Interferome-
try (VLBI) employs continental baselines, integrating premier mm/sub-mm radio
telescopes to image remote objects. The Event Horizon Telescope (EHT) notably
utilized this technique to capture the shadows of the black holes M87* (Collabo-
ration et al., 2019) and Sag A* (Akiyama et al., 2022), achieving remarkable reso-
lution. However, at the current 230 GHz range, the maximum angular resolution
is approximately 22 µas, constrained by Earth’s diameter. To enhance our resolu-
tion, observations at higher frequencies in the sub-mm are necessary, but Earth’s
atmosphere restricts these frequencies from most locations. Higher-resolution ob-
servations would not only enable us to discern more distant black holes but also
their photon rings, offering a route to precise black hole property measurements
and Kerr metric validations.

This report will outline the formation of astrophysical black holes, elucidate the
Kerr Metric’s general relativistic aspects, and describe particle trajectories in such
rotating systems. All the analyses for the Kerr geometry have been carried out in
Python using the EinsteinPy library (EinsteinPy Development Team, 2024) which
is an open-source package dedicated to problems arising in General Relativity and
gravitational physics. It will then present the EHT collaboration’s findings on black
hole shadows and conclude with future EHT prospects and the potential of balloon
and space-based interferometers for increasing resolution.

1 Introduction

1.1 Astrophysical black holes

The formation of astrophysical black holes, celestial objects of such extreme density that
nothing, not even light, can escape their gravitational pull, is a subject that captures
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Figure 1: First panel showing a highly collimated relativistic jet at 1.4 GHz around a
Galactic stellar black hole from Cygnus X-1 region (Gallo et al., 2005). The second panel
shows a Chandra X-ray image of the same region (Miller, 2007).

the intersection of theoretical speculation and observational astronomy. The conceptual
journey begins with the Newtonian mechanics’ proposition by John Michell in 1783 and
independently by Pierre-Simon Laplace in 1796, theorizing the existence of ”dark stars”
whose escape velocity surpasses the speed of light. These musings laid the groundwork
for what would, centuries later, be recognized as black holes. The equation is given by,

R =
2GM

c2
(1)

where R marks the radius beneath which the escape velocity exceeds the speed of light,
encapsulating this early theoretical foundation. Where M is the object mass, G is the
gravitational constant, and c is the speed of light.

The formalism of black holes, however, owes its rigor to the 20th-century advent
of general relativity (Einstein et al., 1916). This was followed by Karl Schwarzschild’s
discovery of the Schwarzschild solution, describing the spacetime around a non-rotating,
spherically symmetric black hole. Subsequent solutions, including the Kerr solution for
rotating black holes, further elaborated the mathematical underpinning of these objects,
encapsulating their properties solely in terms of mass (M), spin angular momentum (J),
and, theoretically, electric charge (Q), though the latter is negligible for astrophysical
objects.

Astrophysical observations as referred in Fig 1 have corroborated the theoretical ex-
istence of black holes, beginning with the dynamical measurement of the compact object
in Cygnus X-1 in the early 1970s. This period heralded the search for black holes in
the universe, employing techniques to measure the masses and spins of these enigmatic
objects. Notably, the equation defining the gravitational radius,

rg =
GM

c2
= 14.77

M

10M⊙
km (2)

where M⊙ denotes the mass of the Sun, and highlights the scale at which black hole
effects become significant. The discovery of gravitational waves by LIGO in 2015 from
the merger of two black holes, and the first image of a black hole (Fig 2) by the Event
Horizon Telescope in 2019, underscore the empirical foundations supporting black hole
physics.
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Figure 2: First-ever image of a black hole shadow at the center of Galaxy M87 (Collab-
oration et al., 2019). The image shows a bright ring formed as light bends in the intense
gravity around a black hole that is 6.5 billion times more massive than the Sun.

The theoretical exploration and empirical investigation into black holes provide a pro-
found understanding of these cosmic phenomena. The interplay between general relativity
and observations across the electromagnetic spectrum, from radio to X-rays, enables the
study of black holes from stellar mass to supermassive scales. This symbiosis of theory
and observation not only enriches our understanding of the universe but also serves as a
testament to the predictive power of physical laws over the vast expanse of cosmic scales.

1.2 VLBI and Imaging Black Holes

Very Long Baseline Interferometry (VLBI) enables the synthesis of Earth-sized virtual
telescopes, achieving angular resolutions sharp enough to observe the photon rings of
supermassive black holes (SMBHs) like M87* and Sgr A*. By combining signals from
dispersed telescopes, VLBI overcomes the diffraction limit, crucial for imaging black holes
at their event horizons. However, millimeter-wavelength VLBI faces challenges such as
limited antenna receiver sensitivity and short atmospheric coherence times, which are
mitigated by technological advancements and the integration of powerful telescopes like
ALMA into the Event Horizon Telescope (EHT) array.

The EHT’s images of M87* and Sgr A* have provided unprecedented evidence of black
hole shadows and photon rings, marking a significant milestone in astrophysics. These
images validate general relativity’s predictions and offer insights into the dynamics near
black holes.
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Figure 3: A cartoon explaining how VLBI works. Unlike traditional interferometry, VLBI
uses continental baselines in order to improve the angular resolution of the observations
relying on highly stable hydrogen masers to timestamp the raw signals. The signals
recorded in physical drives are then brought to a central facility and correlated.

2 The Kerr Metric and orbits around rotating Black

Holes

2.1 The Kerr Spacetime

The Kerr geometry, discovered by Roy Kerr in 1963, extends the Schwarzschild solution
to include rotating black holes, characterized by mass M and angular momentum J . This
geometry is pivotal in understanding the most general rotating black-hole solutions in vac-
uum spacetime as described by general relativity. Unlike the non-rotating Schwarzschild
black holes, Kerr black holes are defined by two parameters: the mass M and the Kerr
parameter a, where a ≡ J/M , representing the black hole’s angular momentum per unit
mass.

The Kerr metric in Boyer-Lindquist coordinates (t, r, θ, ϕ), a generalization of Schwarzschild
coordinates, is given by:

ds2 =−
(
1− 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dϕdt+

ρ2

∆
dr2

+ ρ2dθ2 +

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdϕ2 (3)

where a ≡ J/M , ∆ ≡ r2−2Mr+a2 and ρ2 ≡ r2+a2 cos2 θ. This metric encapsulates
the spacetime surrounding a rotating black hole, demonstrating significant properties
including asymptotic flatness, stationarity, and axisymmetry. The Kerr geometry ap-
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proaches the geometry of flat spacetime far from the black hole, establishing that the
spacetime curvature induced by the black hole can be attributed to its mass M and
angular momentum J .

The metric as shown in Eq. 3 is a solution of the vacuum Einstein equation. Various
significant attributes of the Kerr geometry can be directly derived from this particular
metric expression.

1. Asymptotically Flat: The Kerr metric simplifies notably when considering a
region far from the black hole, where the radial distance r is much larger than both
the black hole’s mass M and its angular momentum per unit mass a. In this regime,
the line element approximates to,

ds2 ≈−
(
1− 2M

r

)
dt2 +

(
1 +

2M

r

)
dr2

+ r2(dθ2 + sin2 θdϕ2)− 4Ma

r2
sin2 θ(rdϕ)dt+ . . . , (4)

This form indicates that at large distances, the Kerr spacetime behaves as though
it is flat, mirroring the spacetime far from a massive body. The leading terms in
each metric coefficient reveal this behavior, with the inverse radius corrections kept
where applicable. From such a distance, the curvature of spacetime attributed to
the black hole can be inferred from the movement of satellites in distant orbits, as
their paths are influenced by the black hole’s mass. Additionally, the precession of
orbiting gyroscopes can give away the black hole’s angular momentum.

2. Killing Vectors : The Kerr metric exhibits time-independence and rotational
symmetry, being constant in both time (t) and the azimuthal angle (ϕ). These
features are embodied by two Killing vectors:

ξα = (1, 0, 0, 0) (Time-independent, stationary) (5)

ηα = (0, 0, 0, 1) (axisymmetric) (6)

These vectors demonstrate the invariance of the metric under time translations and
rotations around the axis of symmetry. Furthermore, the Kerr metric remains the
same upon a reflection across the equatorial plane, indicated by θ = π/2, where it
sends θ to π−θ, a reflective symmetry characteristic of the spacetime surrounding a
rotating mass. Despite these symmetries, it’s notable that the Kerr spacetime does
not possess spherical symmetry. This is evidenced by the dependence of the metric
coefficients gtt and grr on the polar angle θ, highlighting the anisotropic nature of
the geometry due to the central object’s rotation.

3. Non-rotating case: In the absence of rotation, when the Kerr parameter a is
set to zero, the Kerr metric as mentioned in Eq 3 transitions to the Schwarzschild
metric, as expressed in Schwarzschild coordinates. This reveals that the family
of Kerr solutions encompasses the Schwarzschild solution as a particular instance
where the black hole has no angular momentum.

For a non-rotating black hole, where the spin parameter a = 0, the Kerr metric
simplifies as follows:
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Figure 4: A plot showing a 4× 1030 kg Black Hole with different spin parameters a. The
surfaces are clearly visible in the plots. Going radially inward, we have Outer Ergosphere,
Outer Event Horizon, Inner Event Horizon and Inner Ergosphere. We can also observe
that as the spin parameter a → 1 (its maximum attainable value), the individual sin-
gularities become prominent. On the other hand as a → 0 some singularities appear to
fade away, leaving us with a single surface, that is the Event Horizon of a Schwarzschild
black hole.

• The term ρ2 simplifies to r2.

• The term ∆ simplifies to r2 − 2Mr.

• The cross-term involving dϕdt vanishes.

• The coefficient of dϕ2 simplifies significantly.

Thus, the Kerr metric reduces to the Schwarzschild metric:

ds2 = −
(
1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dθ2 + r2 sin2 θdϕ2, (7)

which describes the spacetime around a non-rotating, spherically symmetric mass.

4. Singularities and Horizon: The Kerr metric is characterized by singularities that
emerge when the function ρ is null and the quantity ∆ vanishes as shown in Fig 4.
Specifically, a real singularity—indicative of infinite spacetime curvature—occurs
at the coordinates r = 0 and θ = π

2
. This singularity aligns with that of the

Schwarzschild geometry’s singular point at r = 0, when the rotation parameter a is
set to zero.

The expression for ∆ is given by:

∆ = r2 − 2Mr + a2 (8)

and becomes zero at radii r± = M ±
√
M2 − a2, which are identified as coordinate

singularities. Such singularities can typically be removed by transitioning to an
alternate coordinate system. The radius r+ aligns with the Schwarzschild radius at
2M when a = 0 and marks the Kerr black hole’s event horizon, which cloaks the
real singularity from an external viewpoint.

The Kerr spacetime inside the horizon, particularly for r < r+ (e.g., at r = r−),
reveals a complex and rich structure. Nevertheless, astrophysical studies predom-
inantly concentrate on the spacetime properties exterior to the event horizon, due
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to their significant implications for observational astronomy and theoretical astro-
physics.

2.2 Event Horizon of a Kerr Black Hole

The horizon of a black hole is described as the ultimate boundary from which light cannot
escape, forming a null three-surface. For Schwarzschild black holes, this surface is at a
constant radius of r = 2M . Light can escape from any point outside this horizon, but
none can from inside it. The horizon serves as the demarcation line that segregates the
region of spacetime that is causally disconnected from an external observer.

Figure 5: A plot showing a Kerr black hole’s event horizon and the ergosphere. The plot
shows that the photon’s trajectory is reversed due to frame-dragging effects, so that it
moves in the direction of the black hole’s spin, before eventually falling into the black
hole.

The boundary of the region from which light can escape a black hole is a three-surface
created by light rays that are in a delicate balance between falling into the black hole and
escaping to infinity. This surface termed the horizon, is a null three-surface, where each
point has a null tangent vector that is orthogonal to two spacelike tangent vectors. This
null surface is stationary and axisymmetric, matching the symmetries of a rotating black
hole. The horizon is formed by the light rays that remain at a constant radius, suggesting
that these light rays neither move outward towards infinity nor inward towards the black
hole’s center, maintaining a stable position in the black hole’s gravitational field.

The horizon of a Kerr black hole, specifically denoted as r = r+, is characterized as a
stationary, axisymmetric null surface within the Kerr geometry. To illustrate that r = r+
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Figure 6: A cartoon illustrating the light cone structure around a rotating black hole.
The first image (a) shows a spacetime diagram of light cones orbiting around a Kerr black
hole. The second image (b) shows the orbits of the light cones as they get closer to the
black hole. The tilt in the light cones is due to the effect of frame dragging. Finally, the
third image (c) shows that within the ergosphere, light cones are even more tipped such
that all futures rotate in the sense of a black hole. In other words, within the ergosphere
it is impossible to stand still.

is indeed a null surface, one can examine its tangent vectors tα. These vectors lie within
the constant r surface and have the form tα = (tt, 0, tθ, tϕ).

The condition for a null surface can be satisfied when the dot product of the null
vector ℓ · ℓ = 0. In the Kerr metric in Boyer-Lindquist coordinates, the condition ℓ · ℓ = 0
for a tangent vector of the form (15.7) simplifies to:(

2Mr+ sin θ

ρ+

)2

(ℓϕ)2 − a

2Mr+
(ℓt)2 + ρ2+(ℓ

θ)2 = 0 (9)

Here, ρ+ represents ρ evaluated at r+. The only solution to this equation for ℓθ = 0
and ℓϕ = a

2Mr+
ℓt. This leads to the unique null vector in the r = r+ three-surface being

expressed as:

ℓα = (1, 0, 0,ΩH) (10)

where ΩH is the angular velocity of the black hole’s horizon, defined by the equation:

ΩH =
a

2Mr+
(11)

This angular velocity is an essential feature of the Kerr black hole, indicating that the
horizon itself is rotating, a manifestation of the spacetime-dragging effect induced by the
black hole’s rotation.

2.3 Orbits and Effective Potential

In the equatorial plane of Kerr geometry, the dynamics of test particles and light rays
diverge significantly from their Schwarzschild counterparts due to the absence of spherical
symmetry, preserving only axial symmetry.
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The governing metric for equatorial orbits, limited to θ = π
2
, is given by

ds2 = −
(
1− 2M

r

)
dt2 +

4Ma

r
dtdϕ+

(
r2 + a2 +

2Ma2

r

)
dϕ2 − r2

∆
dr2 (12)

where ∆ = r2 − 2Mr + a2.
Orbits are characterized by the conserved energy per unit mass e, and angular mo-

mentum per unit mass ℓ, stemming from the symmetries of the Kerr metric, expressed
as

e = −ξ · u, (13)

ℓ = η · u. (14)

The effective potential for radial motion of particles, Veff(r, e, ℓ), is

Veff(r, e, ℓ) = −M

r
+

ℓ2 − a2(e2 − 1)

2r2
− M(ℓ− ae)2

r3
, (15)

leading to the radial motion equation

e2 − 1 =
1

2

(
dr

dτ

)2

+ Veff(r, e, ℓ). (16)

For light rays, the effective potential Weff(r, b, σ) depends on the impact parameter
b = ℓ/e and the co-rotating or counter-rotating nature relative to the black hole’s spin:

Weff(r, b, σ) =
1

r2

(
1− a2

b2

)
− 2M

r3

(
1− σ

a

b

)
. (17)

The extremal Kerr black hole (a = M) features distinctive orbits at r = 2M and r =
4M for co-rotating and counter-rotating photons, indicative of the profound influence of
the black hole’s rotation on the surrounding spacetime. These equations are indispensable
for interpreting astrophysical phenomena, including the mechanisms of energy extraction
in the vicinity of rotating black holes.

In Kerr geometry, the study of orbits within the equatorial plane reveals the intricate
nature of spacetime around rotating black holes. A particle orbiting at a radius R must
have an initial radial velocity of zero for it to maintain a circular orbit. The condition
for this stationary orbit, derived from the effective potential, is given by:

e2 − 1

2
= Veff(R, e, ℓ) (18)

Additionally, the particle must have no radial acceleration:

∂Veff(r, e, ℓ)

∂r

∣∣∣∣
r=R

= 0 (19)

Stable circular orbits are those where the effective potential is at a minimum:

∂2Veff(r, e, ℓ)

∂r2

∣∣∣∣
r=R

> 0 (20)

For the innermost stable circular orbit (ISCO), the condition for radial acceleration
becomes an equality. Solving the equations for the specific energy e, the specific angular
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Figure 7: The first figure shows the radial effective potential Veff for different specific
angular momenta (ℓ) of test particles in the equatorial plane of a Kerr black hole. The
stable orbits have been marked by the red dots on these lines. The black hole’s spin a
modifies the potential, influencing particle orbits. The second figure is photon effective
potential Weff for varying impact parameters (b) and angular momentum orientations (σ)
around a Kerr black hole. The plot illustrates the rotation-induced asymmetry in photon
orbit potentials.

momentum ℓ, and the radius R yields the parameters for the ISCO. Here, the binding
energy per unit rest mass, 1−e, attains its maximum value. Specifically, in the case of an
extremal Kerr black hole, where the spin parameter a equals the mass M , the ISCO and
the corresponding maximal fractional binding energy provide critical insights into the
black hole’s gravitational pull. The parameters for the ISCO in this extremal scenario
are as follows:

e =
1√
3
, ℓ =

2M√
3
, rISCO = M. (21)

In such extremal Kerr black holes, the binding energy can reach approximately 42%.
However, for non-extremal Kerr black holes, where the spin-up results from accretion
processes, the efficiency of energy release, while still significant, is less than in the extremal
case. For these realistic black holes, the maximum a/M ratio is about 0.998, which
corresponds to a maximal fractional binding energy of roughly 30%.

The radius of the innermost stable circular orbit (ISCO), denoted as RISCO, encap-
sulates the complex interplay between a Kerr black hole’s spin and the relativistic dy-
namics of particles in its vicinity. The relation between RISCO and the dimensionless
spin parameter a/M bifurcates distinctly for corotating and counterrotating orbits due
to frame-dragging effects.

Functions Z1 and Z2, which are intermediary variables in the expression for RISCO,
are defined as follows:

Z1 = 1 + (1− a2/M2)1/3
[
(1 + a/M)1/3 + (1− a/M)1/3

]
(22)

Z2 =
√
3a2/M2 + Z2

1 (23)

For corotating orbits, where particles move in the same rotational direction as the
black hole, RISCO decreases with an increase in a/M due to the supportive role of the
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Figure 8: The graph illustrates the variation of RISCO with the black hole’s spin pa-
rameter a/M , showing a monotonically decreasing function for corotating orbits and a
monotonically increasing function for counterrotating orbits, relative to the non-spinning
Schwarzschild case.

black hole’s angular momentum:

RISCO, corot(a) = M
[
3 + Z2 −

√
(3− Z1)(3 + Z1 + 2Z2)

]
(24)

Conversely, for counterrotating orbits, where particles move in opposition to the black
hole’s rotation, RISCO increases with a/M :

RISCO, counterrot(a) = M
[
3 + Z2 +

√
(3− Z1)(3 + Z1 + 2Z2)

]
(25)

In the limit of a non-rotating (Schwarzschild) black hole, where a = 0, both corotating
and counterrotating orbits converge to the same RISCO of:

RISCO, Schwarzschild = 6M (26)

The nuanced behavior of RISCO as a function of the Kerr black hole’s spin parameter
a/M underscores the pivotal role of the black hole’s angular momentum in warping the
surrounding spacetime. The effect known as frame-dragging causes spacetime itself to
swirl around the rotating mass. Near the event horizon, this phenomenon is particularly
pronounced, leading to the dragging of inertial frames in the direction of the black hole’s
rotation. Such significant alteration in spacetime not only modifies the trajectories of
particles and light but also affects the entire accretion process.

For accretion disk emissions, the differential rotation of spacetime leads to an asym-
metry in the emission profiles. Material spiraling into the black hole at the ISCO moves
with velocities close to the speed of light, and due to relativistic beaming, emissions from
the disk material moving towards the observer are significantly boosted, while emissions
from material moving away are redshifted. This relativistic beaming effect is enhanced
for corotating material near the event horizon, contributing to the high luminosity and
spectral characteristics observed in X-ray binaries and active galactic nuclei.
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2.4 Calculation of Geodesics in Kerr Spacetime

Investigating the dynamics of particles and light in the vicinity of rotating black holes
necessitates a thorough understanding of geodesics within Kerr spacetime. The geometry
of this spacetime is described by the Kerr metric, which, in Boyer-Lindquist coordinates
(t, r, θ, ϕ), is expressed through the line element as shown in Eq 3. Where G is the
gravitational constant, M denotes the mass of the black hole, a represents the black hole’s
angular momentum per unit mass, r is the radial coordinate, θ the polar coordinate, ϕ
the azimuthal angle, ∆ = r2 − 2GMr + a2, and ρ2 = r2 + a2 cos2 θ.

Figure 9: A figure showing the timelike geodesics of a particle around a Kerr black hole
simulated using the EinsteinPy package. The geodesic has been highlighted in orange
color, the black hole event horizon is represented in dark grey, and the ergosphere is
represented in light grey color.

The challenge of computing geodesics in such a complex spacetime necessitates the
use of the Hamilton-Jacobi formalism, a powerful technique in classical mechanics that
extends to general relativity. This approach exploits the separability of the Hamilton-
Jacobi equation in Kerr spacetime, which can be written as:

∂S

∂τ
+

1

2
gµν

∂S

∂xµ

∂S

∂xν
= 0, (27)

where S denotes Hamilton’s principal function, embodying the action of the system.
Given the symmetries of the Kerr spacetime, S adopts a separable form:

S = −Et+ Lϕ+ Sr(r) + Sθ(θ), (28)

with E and L being the conserved energy and angular momentum of the test particle,
respectively, and Sr(r) and Sθ(θ) representing the radial and polar parts of the action,
which are functions solely of r and θ.
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To solve for geodesics the EinsteinPy package was used. EinsteinPy first separates
the Hamilton-Jacobi equation into partial differential equations by exploiting the metric’s
symmetries. This separation leads to the identification of conserved quantities along the
geodesics, such as the energy E, angular momentum L, and an additional constant known
as Carter’s constant Q, which arises due to the hidden symmetries of the Kerr spacetime
as shown in Sec 2.3. The resulting equations of motion for the test particles or photons
are then integrated using numerical techniques. These equations are highly nonlinear
and coupled. Numerical integration, employing adaptive step-size Runge-Kutta is used
for the computation of geodesic trajectories under a wide range of initial conditions.

3 Black Hole shadows and what do they tell us

The Event Horizon Telescope Collaboration provided groundbreaking empirical evidence
of such a shadow in M87*, a supermassive black hole at the center of the galaxy M87
(Akiyama et al., 2022). This finding was facilitated by very long baseline interferom-
etry (VLBI), which could synthesize a telescope array with Earth-spanning diameters,
achieving the necessary resolution to detect the shadow at a wavelength of 1.3 mm.

Figure 10: Images of M87* (left) and Sgr A* (right) published by the EHT Collaboration.
The angular scales are mentioned at the bottom in white.

The shadow itself, a consequence of gravitational light bending and photon capture
at the event horizon, provides a visible confirmation of the black hole’s existence and
allows the testing of GR in the strong-field regime. The diameter of this shadow can be
approximated by d = αθg, where α is a dimensionless parameter dependent on the black
hole’s spin and inclination, θg = GM/c2D is the angular gravitational radius, M is the
black hole mass, G is the gravitational constant, c is the speed of light, and D is the
distance to the observer.

The asymmetry in the emission ring’s brightness, as detailed by the EHT Collabora-
tion, is attributable to the relativistic beaming of material orbiting close to the speed of
light in the strong gravitational field near the black hole (Blandford and Znajek, 1977).
This asymmetry gives clues about the black hole’s spin direction and the dynamics of
accretion processes occurring near the event horizon.
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3.1 Properties of M87*

The EHT measured the black hole’s shadow diameter as 42 ± 3µas, which, given the
distance of M87 estimated at 16.8±0.8Mpc, yields a mass for M87* of (6.5±0.7)×109M⊙.
This observed shadow is consistent with the predicted gravitational silhouette cast by the
black hole’s event horizon as light bends in the intense gravitational field, described by
the Kerr metric of a rotating black hole in General Relativity.

Given the angular diameter of the black hole shadow δ = 42µas and the distance to
M87 DL = 16.8 Mpc, we first convert the angular diameter to radians and then to the
physical diameter of the shadow:

D = 2δDA = 2

(
42× 10−6

206265

)(
16.8× 106 pc

) (
3.086× 1016 m/pc

)
(29)

Given that the shadow diameter is due to the photon sphere in the Kerr metric, we
can relate the shadow radius Rs to the black hole mass M through the relation:

Rs =
rph√
1− a2

r2ph

(30)

For non-extreme spin values and assuming an equatorial observer, we approximate
rph ≈ 3M . The mass M can then be estimated as:

M ≈ Rs

3
≈ D

6
(31)

Inserting the value of D from equation (1), we find:

M ≈
2
(

42×10−6

206265

)
(16.8× 106 × 3.086× 1016)

6
(32)

Finally, converting this mass into solar masses by dividing by GM⊙
c2

, where M⊙ is the
mass of the Sun in kilograms, we estimate the mass of M87*:

M ≈ D

6GM⊙/c2
M⊙ (33)

This rough estimation, while simplified yields a mass consistent with the value mea-
sured by the EHT, (6.5±0.7)×109M⊙, within the margins of observational uncertainties.

The asymmetry in brightness observed in the emission ring, with a significant bright-
ness contrast and a deviation from circularity at a ratio of less than 4:3, suggests a plasma
rotating at relativistic speeds close to the black hole. This is known as relativistic beam-
ing. Material rotating in the clockwise direction as seen by the observer, i.e., the bottom
part of the emission region is moving toward the observer.

EHT observations are interpreted through the lens of general-relativistic magnetohy-
drodynamic (GRMHD) models that describe a hot, magnetized accretion disk around a
Kerr black hole, which naturally produces a jet. The simulations allow for the param-
eterization of the black hole spin a∗ and the dimensionless magnetic flux threading the
event horizon, providing a rich framework to describe the observed image features.

The physical parameters and the dynamics of the accretion flow are further encapsu-
lated by GRMHD simulations, which scale with the mass of the black hole. A typical
simulation is characterized by the dimensionless spin a∗ = Jc/GM2, where J and M
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Figure 11: Image of the immediate vicinity of the supermassive black hole M87*, as
released by the EHT collaboration in 2019, with two critical curves superposed: that of
a Schwarzschild black hole (magenta dotted circle) and that of an extremal Kerr black
hole seen under the inclination θo = 163o (green dotted curve), with the projection of
the spin axis onto the screen indicated by the green arrow (position angle θ = 108o with
respect to the βs-axis)(Credit: Éric Gourgoulhon).

represent the black hole’s spin angular momentum and mass, respectively. These simu-
lations contribute to a comprehensive library of synthetic images, used to create model
visibilities that match the EHT observations.

3.2 Properties of Sag A*

Astrophysical observations of Sagittarius A* (Sgr A*), the supermassive black hole at the
center of our Galaxy, have significantly enhanced our understanding of its properties. The
Kerr metric, which characterizes stationary, vacuum, and axisymmetric black holes free
of electromagnetic charge, is expected to describe such black holes. The Event Horizon
Telescope (EHT) has provided new constraints on the deviations from the Kerr prediction
based on 2017 observations of Sgr A* (Akiyama et al., 2022).

The following parameters characterize the black hole Sgr A*:

• Mass (M): The mass of Sgr A* is a crucial parameter, which has been inferred from
the dynamics of the central stellar cluster and precisely measured through infrared
observations of stars orbiting the black hole. The EHT Collaboration adopts a mass
of M = 4.1 × 106M⊙, which has been determined with high precision from these
dynamical measurements.

• Distance (D): Sgr A* is located at a distance of approximately 8 kpc from Earth.
This distance has been refined over the years through observations and modeling
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of the orbits of stars in the Galactic center.

• Spin (a): The spin of Sgr A* is described by the dimensionless parameter a = J/M ,
where J is the angular momentum of the black hole. The spin determines the
innermost stable circular orbit (ISCO) and affects the space-time structure near
the event horizon. Based on the reconstruction of dark spots in the images of
supermassive black holes SgrA* and M87* provided by the Event Horizon Telescope
(EHT) collaboration, the inferred spins for these black holes are determined. The
accretion disk model, as well as recent general relativistic magnetohydrodynamic
(GRMHD) simulations, support the presence of hot accretion matter in the vicinity
of the event horizons of these black holes. This allows for the modeling of the
dark spot as a lensed image of the event horizon globe, which can then be used to
estimate the spin parameter of the black hole.

For SgrA*, the spin parameter a, which is defined as the black hole’s angular mo-
mentum per unit mass, has been inferred to be in the range 0.65 < a < 0.9. This
estimation is based on the size of the dark spot compared to the expected position
of the classical black hole shadow. The spin parameter is a crucial characteristic as
it influences the radius of the ISCO, the shape of the black hole’s shadow, and the
dynamics of the accretion disk and relativistic jets.

The precision of the spin estimation is acknowledged to be at the 1σ confidence
level, suggesting that there is room for refinement with future observations and
advancements in the EHT or other observatories such as the proposed Millimetron
Space Observatory. These observations have the potential to provide sharper im-
ages, which could lead to more accurate determinations of the black hole’s spin and
other parameters.

• Angular Size (θg) and Shadow Diameter: The angular size, θg, is a crucial ob-
servable, representing the apparent size of the black hole’s event horizon from our
vantage point on Earth. It is defined mathematically as:

θg =
GM

Dc2
(34)

where G is the gravitational constant, M is the mass of Sgr A*, D is the distance
to Sgr A*, and c is the speed of light.

The shadow cast by Sgr A* is directly related to its mass and the geometry of
spacetime in its vicinity. The shadow diameter for a Schwarzschild black hole can
be estimated by:

dsh,Sch =
5.2GM

c2
(35)

However, for a Kerr black hole like Sgr A*, the diameter is influenced by the spin
parameter a, leading to:

d̂m = αc (dsh + δdsh,Sch) (36)

where αc is the calibration factor accounting for observational and theoretical bi-
ases, dsh is the actual shadow diameter, and δ quantifies the deviation from the
Schwarzschild case.

The EHT observations have provided measurements of Sgr A*’s shadow diameter
to be approximately 47-50 microarcseconds (µas), which are consistent with the
Kerr metric predictions when the black hole’s spin is taken into account.
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Figure 12: The observed image of Sagittarius A* (Sgr A*), as captured by the Event
Horizon Telescope (EHT). Prominent features include the bright emission ring surround-
ing the central darkness, which is the black hole’s shadow against the backdrop of glowing
gas. The asymmetry in brightness, attributed to Doppler boosting, indicates the rela-
tivistic motion of the emitting material. The scale is given by the diameter of the shadow,
approximately 24 million km across, set within the larger context of the surrounding ac-
cretion flow with a spatial extent of about 63 million km.

These measurements not only support the existence of Sgr A* as a Kerr black
hole but also allow us to probe the nature of gravity in one of the most extreme
environments in the universe.

4 The future of VLBI: Quest for sharper shadows

4.1 Current limitations with EHT

EHT utilizes the technique of Very Long Baseline Interferometry (VLBI), which syner-
gistically combines telescopes across the Earth to form a virtual observatory of planetary
scale, capable of resolving the shadow of a black hole with remarkable precision.

The angular resolution θ achievable through VLBI is delineated by the relation:

θ ≈ λ

B
(37)

where λ is the wavelength of observation, and B is the baseline or the maximum
separation between array elements. The EHT, operating at a frequency of 230 GHz –
corresponding to millimeter wavelengths – effectively utilizes the Earth’s diameter as its
baseline, thereby achieving an angular resolution on the order of ∼ 22 microarcseconds
(µas). This fine resolution has enabled the EHT to observe the shadow of M87*, an
image that not only aligns with theoretical predictions but also serves as a crucial test
for Einstein’s theory of General Relativity.
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Figure 13: Image showing all the telescopes that were used for EHT observations
(Akiyama et al., 2022).

However, EHT’s capability is inherently bound by certain limitations. Baselines are
limited by the Earth’s diameter, and without orbital telescopes, cannot be extended
further. Moreover, the Earth’s atmosphere presents a formidable barrier; it absorbs
significant amounts of incoming millimeter and sub-millimeter radiation, thereby limiting
the ground-based observatories to frequencies below 230 GHz. This absorption poses a
substantial impediment to capturing the faint signals that emanate from cosmic sources.

Addressing these challenges may involve deploying space-based VLBI stations, which
would allow for an unprecedented extension of baseline lengths beyond Earth’s confines,
and, in turn, significantly refine the angular resolution. Or, balloon-based mobile VLBI
stations can also allow observations at higher frequencies as they fly 99.5% above the
Earth’s atmosphere as shown in Fig 14. Balloons can also help us fill in the u− v space
thereby increasing the overall sensitivity of observation.

4.2 Resolving photon rings with ngEHT

In the strong gravitational field near a black hole, light can be bent and captured into
orbit, forming what are known as photon rings. These rings are a set of nested, thin rings
around the black hole’s shadow, each corresponding to photons that have completed an
increasing number of half-orbits around the black hole. Specifically, the n = 0 photon
ring refers to the direct emission that travels from the source to the observer without any
orbit, while n = 1 and n = 2 photon rings consist of photons that have completed one
and two half-orbits respectively, with each successive ring becoming fainter and closer to
the black hole.

The mathematical description of these rings can be approached by considering the
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Figure 14: Figure showing the two possible cases of improving the resolution for next-
generation VLBI observations. The first image shows how a balloon-borne telescope can
be used. The second image shows how space-based VLBI can help us resolve photon rings
of nearby black holes.

effective potential Veff for photon orbits in Schwarzschild spacetime, given by:

Veff(r) =

(
1− 2GM

c2r

)(
L2

r2
− G2M2

c2

)
, (38)

where r is the radial coordinate, M the mass of the black hole, L the angular momen-
tum of the photon, G the gravitational constant, and c the speed of light. This potential
describes the gravitational well affecting the photon trajectories.

The next-generation Event Horizon Telescope (ngEHT) seeks to improve upon the
current EHT’s observations by providing higher-resolution images of these photon rings.
The ngEHT is designed to achieve this through enhancements in baseline coverage, fre-
quency bands, and sensitivity. It aims to resolve the n = 1 ring, which is anticipated to
provide critical information about the black hole’s properties and the nature of gravity
in extreme environments.

With its increased capabilities, the ngEHT will enhance the visibility amplitude mea-
surements, essential for resolving the fine structure of the photon rings. The visibility
amplitude V in the context of VLBI is given by the Fourier transform of the intensity
distribution I(x, y):

V (u, v) =

∫ ∫
I(x, y)e−2πi(ux+vy) dx dy, (39)

where (u, v) represents the spatial frequencies corresponding to the interferometric
baselines. By extending these baselines and observing at higher frequencies, the ngEHT
will be able to discern the details of the photon rings with unprecedented clarity, offer-
ing new insights into the physics of black holes and testing the predictions of General
Relativity in the strong-field regime.

5 Conclusion

The Kerr metric has profoundly influenced our conception of rotating black holes and the
fabric of spacetime. It describes a rotating black hole’s gravitational field and the subse-
quent behavior of matter and light near it. Through the predictions of the Kerr metric,
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such as the distinct shadow and photon rings, we’ve begun to unravel and characterize
our observations of black holes.

Very Long Baseline Interferometry (VLBI) has translated these theoretical predic-
tions into empirical scrutiny. The Event Horizon Telescope, an exemplary VLBI net-
work, achieved a scientific milestone by capturing the shadow of M87*, confirming the
Kerr metric’s predictions, and reinforcing the theory of General Relativity under extreme
conditions. Despite these advances, the quest for sharper shadows persists. The next-
generation Event Horizon Telescope (ngEHT) and VLBI experiments promise to expand
upon current capabilities. By offering enhanced baseline coverage and sensitivity, they
will enable more detailed observations of the photon rings that cloak black holes. The
use of space-based and balloon-borne VLBI stations will play a crucial role in this.
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